Дроны с искусственным интеллектом помогут фермерам оптимизировать урожайность овощей
Токио, Япония (SPX), 4 октября 2023 г. –
По соображениям продовольственной безопасности и экономического стимулирования фермеры постоянно стремятся максимизировать урожайность своих товарных культур. Поскольку растения растут непостоянно, во время сбора урожая неизбежно будут различия в качестве и размере отдельных культур. Поэтому поиск оптимального времени для сбора урожая является приоритетом для фермеров.
Новый подход, в котором широко используются дроны и искусственный интеллект, явно улучшает эту оценку за счет тщательного и точного анализа отдельных культур для оценки их вероятных характеристик роста.
Некоторые оптимистичные научно-фантастические рассказы рассказывают о будущем после дефицита ресурсов, в котором человеческие потребности будут удовлетворены, а каторжный труд будет обеспечиваться машинами. В некотором смысле это видение предсказывает некоторые элементы текущего технологического прогресса.
Одной из таких областей являются сельскохозяйственные исследования, где автоматизация оказывает свое влияние. Впервые исследователи, в том числе из Токийского университета, продемонстрировали в значительной степени автоматизированную систему для повышения урожайности сельскохозяйственных культур, которая может принести пользу многим и может помочь проложить путь к будущим системам, которые однажды смогут напрямую собирать урожай.
«Идея относительно проста, но проектирование, реализация и реализация чрезвычайно сложны», — сказал доцент Вэй Го из Лаборатории полевой феномики. «Если фермеры знают идеальное время для сбора урожая на полях, они могут сократить количество отходов, что полезно для них, потребителей и окружающей среды. Но оптимальное время сбора урожая предсказать непросто, и в идеале оно требует детального знания каждого растения; если бы для сбора данных были наняты люди, это было бы непомерно затратно и затратно по времени. Вот тут-то на помощь и приходят дроны».
Го имеет опыт работы как в области компьютерных наук, так и в области сельскохозяйственных наук, поэтому он идеально подходит для поиска способов, которыми современное оборудование и программное обеспечение могут помочь сельскому хозяйству. Он и его команда продемонстрировали, что некоторые недорогие дроны со специализированным программным обеспечением могут отображать и анализировать молодые растения (в данном случае брокколи) и точно предсказывать ожидаемые характеристики их роста. Дроны выполняют процесс визуализации несколько раз и делают это без участия человека, а это означает, что система требует небольших затрат на рабочую силу.
«Некоторых может удивить тот факт, что уборка поля всего лишь за день до или после оптимального времени может снизить потенциальный доход фермера от этого поля на 3,7% до целых 20,4%», — сказал Го.
«Но с нашей системой дроны идентифицируют и каталогизируют каждое растение в поле, а данные их изображений поступают в модель, которая использует глубокое обучение для создания простых для понимания визуальных данных для фермеров. Учитывая текущую относительно низкую стоимость дронов и компьютеров, коммерческая версия этой системы должна быть доступна многим фермерам».
Основная проблема, с которой столкнулась команда, заключалась в анализе изображений и аспектах глубокого обучения. Сбор данных изображения сам по себе относительно тривиален, но, учитывая то, как растения движутся на ветру и как свет меняется со временем и сезонами, данные изображения содержат множество изменений, которые машинам часто трудно компенсировать.
Таким образом, при обучении своей системы команде пришлось потратить огромное количество времени на маркировку различных аспектов изображений, которые могут видеть дроны, чтобы помочь системе научиться правильно идентифицировать то, что она видит. Огромная пропускная способность данных также была сложной задачей: данные изображений часто имели порядок триллионов пикселей, что в десятки тысяч раз больше, чем даже у камеры смартфона высокого класса.
«Меня вдохновляет поиск новых способов, с помощью которых фенотипирование растений (измерение характеристик роста растений) может перейти из лаборатории в поле, чтобы помочь решить основные проблемы, с которыми мы сталкиваемся», — сказал Го.
Отчет об исследовании: Прогнозирование данных об урожае с помощью дронов может сократить потери продовольствия на фермах и повысить доходы фермеров